一次函數(shù)知識(shí)點(diǎn)大總結(jié),一次函數(shù)知識(shí)點(diǎn)整理
來(lái)源:好上學(xué) ??時(shí)間:2023-07-29
一次函數(shù)對(duì)弈很多初中生來(lái)說(shuō)是一個(gè)比較難的知識(shí)點(diǎn),為了方便大家學(xué)習(xí),小編給大家一份一次函數(shù)知識(shí)點(diǎn)大總結(jié)。
函數(shù)性質(zhì)
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k. 即:y=kx+b(k,b為常數(shù),k≠0), ∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。
3.當(dāng)b=0時(shí)(即 y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
4.在兩個(gè)一次函數(shù)表達(dá)式中:
當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;
當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;
當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交; 當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。
若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱(chēng)y是x的一次函數(shù)
圖像性質(zhì)
1.作法與圖形:通過(guò)如下3個(gè)步驟:
(1)列表.
(2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。 一般的y=kx+b(k≠0)的圖象過(guò)(0,b)和(-b/k,0)兩點(diǎn)畫(huà)直線即可。
正比例函數(shù)y=kx(k≠0)的圖象是過(guò)坐標(biāo)原點(diǎn)的一條直線,一般取(0,0)和(1,k)兩點(diǎn)。
(3)連線,可以作出一次函數(shù)的圖象——一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).
2.性質(zhì):
(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。
(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過(guò)原點(diǎn)。
3.函數(shù)不是數(shù),它是指某一變化過(guò)程中兩個(gè)變量之間的關(guān)系。
4.k,b與函數(shù)圖像所在象限:
y=kx時(shí)(即b等于0,y與x成正比例):
當(dāng)k>0時(shí),直線必通過(guò)第一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)第二、四象限,y隨x的增大而減小。<>
y=kx+b時(shí):
當(dāng) k>0,b>0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)第一、二、三象限;
當(dāng) k>0,b<0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)第一、三、四象限;
當(dāng) k<0,b>0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)第一、二、四象限;
當(dāng) k<0,b<0, 這時(shí)此函數(shù)的圖象經(jīng)過(guò)第二、三、四象限;
當(dāng)b>0時(shí),直線必通過(guò)第一、二象限;
當(dāng)b<0時(shí),直線必通過(guò)第三、四象限。<>
特別地,當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)第一、三象限,不會(huì)通過(guò)第二、四象限。
當(dāng)k<0時(shí),直線只通過(guò)第二、四象限,不會(huì)通過(guò)第一、三象限。<>
5.特殊位置關(guān)系:
當(dāng)平面直角坐標(biāo)系中兩直線平行時(shí),其函數(shù)解析式中K值(即一次項(xiàng)系數(shù))相等
當(dāng)平面直角坐標(biāo)系中兩直線垂直時(shí),其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個(gè)K值的乘積為-1) )
?、埸c(diǎn)斜式 y-y1=k(x-x1)(k為直線斜率,(x1,y1)為該直線所過(guò)的一個(gè)點(diǎn))
?、軆牲c(diǎn)式 (y-y1) / (y2-y1)=(x-x1)/(x2-x1)(已知直線上(x1,y1)與(x2,y3)兩點(diǎn))
?、萁鼐嗍健?a、b分別為直線在x、y軸上的截距)
?、迣?shí)用型 (由實(shí)際問(wèn)題來(lái)做)
公式
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2 (注:根號(hào)下(x1-x2)與(y1-y2)的平方和)
5.求兩個(gè)一次函數(shù)式圖像交點(diǎn)坐標(biāo):解兩函數(shù)式
兩個(gè)一次函數(shù) y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 將解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 兩式任一式 得到y(tǒng)=y0 則(x0,y0)即為 y1=k1x+b1 與 y2=k2x+b2 交點(diǎn)坐標(biāo)
6.求任意2點(diǎn)所連線段的中點(diǎn)坐標(biāo):[(x1+x2)/2,(y1+y2)/2]
7.求任意2點(diǎn)的連線的一次函數(shù)解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母為0,則分子為0) x y +, +(正,正)在第一象限 - ,+ (負(fù),正)在第二象限 - ,- (負(fù),負(fù))在第三象限 + ,- (正,負(fù))在第四象限
8.若兩條直線y1=k1x+b1∥y2=k2x+b2,那么k1=k2,b1≠b2
9.如兩條直線y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.y=k(x-n)+b就是向右平移n個(gè)單位
以上就是一次函數(shù)知識(shí)點(diǎn)整理,希望對(duì)你有所幫助。
今天最后推薦的在線輔導(dǎo)平臺(tái)是專(zhuān)注教育——中小學(xué)網(wǎng)上*輔導(dǎo),全國(guó)重點(diǎn)中學(xué)名師*家教補(bǔ)家教補(bǔ)習(xí)!
以上就是好上學(xué)為大家?guī)?lái)的一次函數(shù)知識(shí)點(diǎn)大總結(jié),一次函數(shù)知識(shí)點(diǎn)整理,希望能幫助到廣大考生! 標(biāo)簽:一次函數(shù)知識(shí)點(diǎn)大總結(jié),一次函數(shù)知識(shí)點(diǎn)整理??