好上學,職校招生與學歷提升信息網。

分站導航

熱點關注

好上學在線報名

在線咨詢

8:00-22:00

當前位置:

好上學

>

職校資訊

>

招生要求

高二數學知識點,高二數學怎么學

來源:好上學 ??時間:2023-07-25

高考是一個是一場千軍萬馬過獨木橋的戰(zhàn)役。面對高考,考生總是有很多困惑,什么時候開始報名?高考體檢對報考專業(yè)有什么影響?什么時候填報志愿?怎么填報志愿?等等,為了幫助考生解惑,好上學整理了高二數學知識點,高二數學怎么學相關信息,供考生參考,一起來看一下吧
高二數學知識點,高二數學怎么學

  很多學生都會有這樣一個認知誤區(qū)就是:總結是文科的事情,理科多做多練就好了。然而結果恰恰是相反的,理科更需要同學們花費時間去整理以及總結,數學也不例外。下面是給大家整理的一些高二數學知識點。

  *

  一、*概念

  (1)*中元素的特征:確定性,互異性,無序性。

  (2)常用數集的符號表示:自然數集;正整數集;整數集;有理數集、實數集。

  (3)*的表示法:列舉法,描述法,韋恩圖。

  (4)空集是指不含任何元素的*。

  注意:空集是任何*的子集,是任何非空*的真子集。

  函數

  一、映射與函數:

  (1)映射的概念:(2)一一映射:(3)函數的概念:

  二、函數的三要素::定義域A、值域C和對應法則f

  相同函數的判斷方法:①對應法則;②定義域(兩點必須同時具備)

  (1)函數解析式的求法:

  ①定義法(拼湊):②換元法:③待定系數法:④賦值法:

  (2)函數定義域的求法:

 ?、俸瑓栴}的定義域要分類討論;

 ?、趯τ趯嶋H問題,在求出函數解析式后;必須求出其定義域,此時的定義域要根據實際意義來確定。

  (3)函數值域的求法:

  ①配方法:轉化為二次函數,利用二次函數的特征來求值;常轉化為型如:的形式;

 ?、谀媲蠓?反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;

 ?、軗Q元法:通過變量代換轉化為能求值域的函數,化歸思想;

  ⑤三角有界法:轉化為只含正弦、余弦的函數,運用三角函數有界性來求值域;

 ?、藁静坏仁椒?轉化成型如:,利用平均值不等式公式來求值域;

 ?、邌握{性法:函數為單調函數,可根據函數的單調性求值域。

 ?、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來求值域。

  三、函數的性質:

  函數的單調性、奇偶性、周期性

  單調性:定義:注意定義是相對與某個具體的區(qū)間而言。

  判定方法有:定義法(作差比較和作商比較)

  導數法(適用于多項式函數)

  復合函數法和圖像法。

  應用:比較大小,證明不等式,解不等式。

  奇偶性:定義:注意區(qū)間是否關于原點對稱,比較f(x)與f(-x)的關系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數;

  f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數。

  判別方法:定義法,圖像法,復合函數法

  應用:把函數值進行轉化求解。

  周期性:定義:若函數f(x)對定義域內的任意x滿足:f(x+T)=f(x),則T為函數f(x)的周期。

  其他:若函數f(x)對定義域內的任意x滿足:f(x+a)=f(x-a),則2a為函數f(x)的周期.

  應用:求函數值和某個區(qū)間上的函數解析式。

  四、圖形變換:函數圖像變換:(重點)要求掌握常見基本函數的圖像,掌握函數圖像變換的一般規(guī)律。

  常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)

  平移變換y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系數,要先提取系數。如:把函數y=f(2x)經過平移得到函數y=f(2x+4)的圖象。

  (ⅱ)會結合向量的平移,理解按照向量(m,n)平移的意義。

  對稱變換y=f(x)→y=f(-x),關于y軸對稱

  y=f(x)→y=-f(x),關于x軸對稱

  y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關于x軸對稱

  y=f(x)→y=|f(x)|把y軸右邊的圖象保留,然后將y軸右邊部分關于y軸對稱。(注意:它是一個偶函數)

  伸縮變換:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具體參照三角函數的圖象變換。

  一個重要結論:若f(a-x)=f(a+x),則函數y=f(x)的圖像關于直線x=a對稱;

  五、反函數:

  (1)定義:一般地,設函數y=f(x)(x∈A)的值域是C,若找得到一個函數g(y)在每一處g(y)都等于x,這樣的函數x= g(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數,記作y=f^(-1)(x) 。反函數y=f ^(-1)(x)的定義域、值域分別是函數y=f(x)的值域、定義域。最具有代表性的反函數就是對數函數與指數函數。

  (2)函數存在反函數的條件:

  (3)互為反函數的定義域與值域的關系:

  (4)求反函數的步驟:①將看成關于的方程,解出,若有兩解,要注意解的選擇;②將互換,得;③寫出反函數的定義域(即的值域)。

  (5)互為反函數的圖象間的關系:

  (6)原函數與反函數具有相同的單調性;

  (7)原函數為奇函數,則其反函數仍為奇函數;原函數為偶函數,它一定不存在反函數。

  七、常用的初等函數:

  (1)一元一次函數:

  (2)一元二次函數:一般式、兩點式、頂點式

  二次函數求最值問題:首先要采用配方法,化為一般式,

  有三個類型題型:

  (1)頂點固定,區(qū)間也固定。

  (2)頂點含參數(即頂點變動),區(qū)間固定,這時要討論頂點橫坐標何時在區(qū)間之內,何時在區(qū)間之外。

  (3)頂點固定,區(qū)間變動,這時要討論區(qū)間中的參數.

  等價命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一個根

  注意:若在閉區(qū)間討論方程有實數解的情況,可先利用在開區(qū)間上實根分布的情況,得出結果,在令和檢查端點的情況。

  (3)反比例函數:

  反比例函數的圖像屬于以原點為對稱中心的中心對稱的雙曲線(hyperbola),反比例函數圖象中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(y≠0)。

  一般地,如果兩個變量x、y之間的關系可以表示成y=k/x (k為常數,k≠0)的形式,那么稱y是x的反比例函數。因為y=k/x是一個分式,所以自變量X的取值范圍是X≠0。而y=k/x有時也被寫成xy=k或y=k·x^(-1)。表達式為:x是自變量,y是因變量,y是x的函數。

  (4)指數函數:

  指數函數:y=(a>o,a≠1),圖象恒過點(0,1),單調性與a的值有關,在解題中,往往要對a分a>1和0

  (5)對數函數:

  對數函數:y=(a>o,a≠1)圖象恒過點(1,0),單調性與a的值有關,在解題中,往往要對a分a>1和0

  以上就是高二數學知識點<的部分內容。那么高二數學怎么學?小編給大家推薦專注教育。

今天最后推薦的在線輔導平臺是專注教育——中小學網上*輔導,全國重點中學名師*家教補家教補習!

以上就是好上學為大家?guī)淼母叨祵W知識點,高二數學怎么學,希望能幫助到廣大考生!

標簽:??

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2024 rolandosalazar210.com All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號